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Abstract. An analytic continuation procedure using Taylor series is utilised to produce 
very accurate wavefunctions and eigenvalues for the Schrodinger equation. 

1. Introduction 

The recent work by Killingbeck (1987) has demonstrated that there is still considerable 
interest in obtaining accurate solutions to simple one-dimensional problems which can 
arise in quantum mechanics. The above reference focuses on a standard two-point 
boundary value problem 

(1) - D2+ + x2+ = E+ 

with E = -1, +(O) = 1 and + ( 5 )  = O  which has been studied by several authors (e.g. 
Holt 1964, Osborne 1969, Roberts and Shipman 1971, Gupta and Agarwal 1985). It 
is observed that standard shooting methods are unstable, and that beyond x - 3.5 they 
do not produce the correct values. Killingbeck has demonstrated that, by viewing the 
equation from the quantum mechanics viewpoint, new insights can be achieved and 
more accurate shooting methods can be derived. 

In another work Killingbeck (1986) has employed perturbation theory to generate 
a family of high-order shooting methods in order to obtain eigenvalues for the 
Schrodinger equation. These procedures lead to results with a higher accuracy than 
the standard Numerov method can achieve. 

In this work we outline an alternative approach which has been proposed by others 
(Holubec and Stauffer 1985) and which leads to very precise results. The technique 
is applied to the above problems in order to demonstrate its accuracy, stability and 
speed. We have found it very easy to implement as well. 

2. Analytic continuation 

The standard Taylor series approach to the solution of a differential equation (DE)  

with initial values given at zo is to approximate the solution in the neighbourhood of 
zo by a truncated Taylor series. The values of the derivatives at zo are determined from 
successive differentiations of the DE. One then proceeds to construct a new Taylor 
series about z, = zo+ h using the derivatives of the first series. This process continues 
to generate an analytic continuation of the solution of the DE along the path 
{ z o ,  zl, z2, .  . .}. This technique requires successive differentiation of the DE, and 
becomes restricted if the DE has singularities anywhere in the complex z plane. 
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Holubec and Stauffer (1985) have proposed a way around this problem based on 
the idea of analytically continuing a Frobenius series rather than a Taylor series. The 
method is applied to second-order linear DE with a regular singularity and with analytic 
coefficients which are finite polynomials. In practice the method works for arbitrary 
order and for more general analytic coefficients. 

We start by writing the test problem in the form 

u " + Q ( z ) u = O  (2) 

with Q( z )  = E - z2 ,  The solution U is expanded in a Taylor series about the point zo as 

N, 
U =  c c,(z-zo)I. 

I =O 

In  the general case Q ( z )  is expanded in a similar fashion 

O(Z) = 2 d,(Z - zo)' 
I=o 

which for the test problem we are looking at reduces to 

(3) 

(4) 

( 5 )  2 Q ( z )  = E -z,-2z,(z - ZO) - ( z  - ZO)? 

Substituting these expansions for U and Q into the DE, and setting the coefficients 
of the different powers of ( z  - zo)  to zero, we arrive at a set of recurrence relations to 
generate the coefficients c,: 

c t t 2=  - [ ( E  - ~ ~ ) ~ , - 2 z ~ c , ~ . , - c , - ~ ] / ( i + 2 ) ( i + l ) .  ( 6 )  

The initial values co = ~ ( z , ) ,  c1 = ~ ' ( z , )  are used to start the series. 
If we start from the origin, we can use the above results with zo = 0. In the general 

case a Frobenius series is used, with the appropriate characteristic exponent. For the 
test problem under evaluation here, the characteristic exponent is 0, and so the regular 
Taylor series about zo = 0 suffices. 

3. Results 

We have first of all examined the test problem 

- 0 '4  + x2$ = E 4  (1) 

with E = -1, $ ( O )  = 1 and 4(5) = 0 in order to compare our results with those obtained 
by Killingbeck (1987). In employing the shooting methods or the above analytic 
continuation procedure, we start by choosing an initial slope G'(0) = G, and then 
compute the solution out to the endpoint. The value of G is varied until the condition 
4(5 )  = 0 is satisfied as well as possible within the precision of the calculations. 

In applying the method of analytic continuation we subdivide the interval into N ,  
subintervals bounded by zo, z I ,  . . . , zy. The expansion about zo is used first to find 
the function and its first derivative at z I ,  and the process is repeated out to the endpoint. 
The other variable is the number of terms N ,  retained in the polynomial expansion (3). 

We have carried out the computations using 32-digit precision, and have found 
that it is very easy to retain this level of accuracy in the wavefunction. We obtained 
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the best G value by using the secant method, starting with two G values which generate 
values of $(5) having different signs: 

Only three or four iterations are required to obtain the best G. We compare our results 
with those of Killingbeck (1987) in table 1 .  These were obtained with N , =  Nl=40. 

Table 2 illustrates how the value of G affects the value of $(5) for a region close 
to the best fit. We also show in table 3 that the results are almost insensitive to the 
value of N , .  Small values of N ,  work quite well. Note that far fewer terms are required 
in our expansion than were used by Killingbeck (1987). 

A comparison of the values of $(x) for sample x values in table 4 demonstrates 
that the power series employed by Killingbeck (1987) gives reasonably good results 
whereas the simple forward-shooting method is quite poor. 

We have also used this procedure to compute the eigenvalues for the Schrodinger 
equation 

- D 2 $ +  V $ =  E$ (8) 

Table 1. Values of $ ' ( O )  = G. 

Method G 

Power series -1.128 379 
Simple method ( N o  = 200) -1.128 379 (extrapolated) 
Numerov ( N o  = 100) 
Analytic continuation -1.1283791670972474114984411143125 

-1.128 378 

Table 2. Variation of $(5) with G. Here G = G,+AG with Go= 
1.1283791670972474114984411143125. 

-2.0 x 5.694 4 X lo-*' 
-LOX 10-31 3.371 77 x IO-'' 

0.0 9.680 09 x loT2' 
1 . o ~  -1.425 79X 
2 . 0 ~  -3.823 27 x 
3 . o ~  -6.152 682 X 

Table 3. Values of $(5) for G=-1.1285. Here cL(5)=$0+A$ with cLo= 
-28.734998 121 669 412 565 557 31. 

A$( N ,  = 35) A$( N, = 40) N ,  

5 1.19921 X 5.700 46 x 10-1' 
10 2.371 229x lo-'' -8.853 2 x 
15 -9.175 1 X IO-" -9.273 2 x 
20 -9.269 6 x -9.269 6 x IO-'' 
30 -9.271 4 x -9.271 4 x 
40 -9.242 9 x IO-" -9.242 9 x 
50 -9.224 6 x -9.224 6 x 
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Table 4. Values of $(x)  for G = -1.1284. 

X Simple forward Power series Analytic continuation 

1 0.259 422 0.259 317 0.25931689687208286122758902577726 
2 0.034 977 0.034 428 0.03442826255099501617231697248597 
3 0.007 01 1 0.000 327 0.00032660231225652539686543196608 
4 0.166 086 -0.054 989 -0.05499051702104752231640686784741 
4.5 1.388 501 -0.460 809 864 741 366 069 908 977 205 543 97 
5 14.902 7 -4.954 08 -4.9542252799329370344057610363929 

-0.460 808 

for the special case V = x4, in order to compare with the results of Killingbeck (1986). 
In this case the recurrence relation (6) must be replaced by 

c,+* = - [ ( E  - z:)c, -4zici-, -6zgc,-, - ~ z , , c ~ - ~  - ~ , - ~ ] / ( i + 2 ) ( i +  1). (9) 
Table 5 lists our results in comparison with those of Killingbeck (1986) for the different 
boundary conditions in the ground state. Here we have used D+(O)=O for the 
even-parity ground state. 

Note that the eigenvalue is a function of the boundary condition. In particular, 
the result obtained with the boundary condition 4 4 5 )  = 0 is in agreement with the result 
over the full semiaxis as computed in the work of Richardson and Blankenbecler 
(1979). Increasing the x axis boundary to values larger than 5 has no effect on the 
result given in table 5 .  

Table 6 lists the eigenvalues for specific even-parity states with +(8) = 0. In all 
cases it is very straightforward to obtain very high accuracy in the results. The initial 
conditions at x = 0 are chosen to produce either even or odd wavefunctions. Wavefunc- 
tions with even parity are generated by choosing $(O) = c and +’(O) = 0 with c an 
arbitrary normalisation constant. Two values of E are then found which lie on either 
side of the eigenvalue being sought, such that they produce values for + at the endpoint 
having opposite signs. The secant method is then employed to generate a new E value, 
and the process iterated until convergence is obtained. 

Table 5. E values for the ground state with V = x4. 

Boundary 
condition N = 200” Analytic continuation 

D$( 1 ) = 0 
* ( 1 , = 0  2.508 197 0 2.508 1969639662134874454094110487 
D*(3) = 0 1.060 362 0 1,060362037084543 847 537 4618864452 
U431 = 0 1.060 362 1 1.0603621399729677368101368642776 
$(5)  = O  1.0603620904841828996470460166927 

0.194 546 03 0.195 538344346823 54985045116934456 

a Perturbation approach of Killingbeck (1986). 

Table 6. E values for the 6th. 10th and 16th even-parity states for V -  x4 and $(8) = O .  

Eigenstate N = 200” Analytic continuation 

6th 
10th 106.923 31 106.92330738173252565307510213617 
16th 208.232 34 208.23233900514394850272347714122 

50.256 254 50.256 254 516 682 919 039 744 588 105 263 

Perturbation with correction term (Killingbeck 1986). 
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4. Conclusions 

The analytic continuation procedure of Holubec and Stauffer (1985) offers a straightfor- 
ward solution to the problem of obtaining high-accuracy wavefunctions and eigenvalues 
for Schrodinger’s equation. Although the procedure is based on functions Q( z )  which 
are finite polynomials, in practice it works very well in any case where the function 
(or the potential) can be expanded in a Taylor series, and analytic coefficients obtained. 
This was demonstrated in their paper by computing the phase shifts for the potential 

V ( r )  = - (2+2/r)  exp(-2r). (10) 

The only real limit to the precision is the precision of the computer employed to carry 
out the calculations. The disadvantage of this technique lies in the requirement to 
construct the Taylor series (4) and the corresponding recurrence relations (6) for each 
specific potential under study. However, if high precision is required in the result, 
this is not an exorbitant cost. 
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